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We have found a mistake in derivation of the nonequilibrium generalization of the expressions for the nonhomogeneous
moments for the Green’s function and the self-energy. Namely, in the derivation of these moments for the nonequilibrium case
when there is explicit time dependence of the Hamiltonian in the Schrodinger representation, H¢=MHg(T), the second and
higher time derivatives of an operator in the Heisenberg representation i’d"Oy/dT" cannot be simply substituted by the
corresponding multiple commutator of the operator with the Hamiltonian L"Oy=[--[[Oy, Huy(T)], Hy(T)]- - - Hy(T)]. In this
case, additional terms proportional to explicit time derivatives of Hg(7) have to be added. Indeed, while the first derivative of
an operator can be substituted by a commutator with Hy(7): idOy/dT=[ O, Hy(T)], beginning with the second time deriva-
tive, one finds additional terms. For instance, the second derivative satisfies i?dOy/dT*=[idOy/dT, Hy(T)]
+[0y,idH(T)1 IT)=L*Oy+[0y,idHy(T)/ IT], where the partial time derivative in the last term is equal to
UN(T)[dH(T)/ ITNA(T), and U(T) is the time evolution operator from the initial time to time 7T (all partial derivatives of the
Hamiltonian are written as a unitary transformation with respect to the evolution operator of the corresponding partial
derivative of the Hamiltonian in the Schrodinger representation). Following this procedure, it is easy to obtain the expressions
for the higher time derivatives of the operators, which will also contain additional terms. These additional terms will result in
additional terms in the expressions for the nonequilibrium spectral moments for the retarded Green’s function and the self-
energy, beginning from the third and the first order, respectively. It is possible to show that the sum of the additional terms
equals zero in the case of the second Green’s function moment, independent of the form of the Hamiltonian.!

Thus, the expression for the third nonequilibrium retarded Green’s function moment (not presented in the original paper)
now acquires additional terms when compared to the equilibrium case:
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where H;(T)=dHy(T)/ IT=U'(T)[TH(T) ! HTUT), Hy(T)=PHu(T)/ IT*=U (T)[PHs(T)/ IT?JU(T) are explicit partial time
derivatives of the Hamiltonian. The correction, which consists of the last two terms in Eq. (1), results in the following
nonequilibrium generalization of Eq. (11) for the third moment of the retarded Green’s function:
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where Re stands for the real part. We also find the corrected formula for the first moment of the retarded self-energy [Eq. (28)]
is
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In both cases, the additional terms can be identified as depending on derivatives of the parameters of the Hamiltonian with
respect to time.

These corrections do not affect the main analytical and numerical results of the paper—the expressions for the local
equilibrium Green’s function and self-energy moments. This is because the only inhomogeneous nonequilibrium problem we
considered was that of a charge density wave in a spatially uniform electric field, where the inhomogeneity is in the interaction
term, and the time dependence is in the hopping. That case can be shown to have all extra terms vanish, so the results given
in the paper are correct.
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